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Overview

The common and standard practice in
self-supervised audio-visual representa-
tions learning is to learn intra-modal and
synchronous cross-modal relationships
between the audio and visual streams
maintaining a strict frame-wise coupling.

Our intuition is that the temporal
synchronicity between audio and visual
segments can be relaxed to some extent
to learn more robust representations.
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Proposed Framework

We obtain two augmented views of v={vt}Tt=0, denoted by v1 and v2, defined as {vt}
t1+tv
t=t1

and

{vt}
t2+tv
t=t2

respectively. Similarly, two augmented views of a={at}Tt=0 can be obtained as a1 and

a2 as {at}
t1+ta
t=t1

and {at}
t2+ta
t=t2

, respectively.
We calculate cosine distance of two embeddings as D(p, z) = − p

||p||2
· z
||z||2

, where p and z are
obtained as h(f (x1)) and S(f (x2)). Here, predictor head is denoted by h, stop-gradient is
denoted by S, f denotes the feature encoder, and augmented views are denoted by x1 and x2
which are t seconds apart. The final training objective LCrissCross calculated as:

Lintra =
1

2
D(pv1, S(zv2)) +

1

2
D(pv2, S(zv1))︸ ︷︷ ︸

Lv1,v2

+
1

2
D(pa1, S(za2)) +

1

2
D(pa2, S(za1))︸ ︷︷ ︸

La1,a2

Lsync =
1

2
D(pv1, S(za1)) +

1

2
D(pa1, S(zv1))︸ ︷︷ ︸

La1,v1

+
1

2
D(pv2, S(za2)) +

1

2
D(pa2, S(zv2))︸ ︷︷ ︸

La2,v2

Lasync =
1

2
D(pv1, S(za2)) +

1

2
D(pa2, S(zv1))︸ ︷︷ ︸

Lv1,a2

+
1

2
D(pv2, S(za1)) +

1

2
D(pa1, S(zv2))︸ ︷︷ ︸

La1,v2

LCrissCross =
1

3
(Lintra + Lsync + Lasync)

Asynchronous Cross-modal Loss (𝐿𝑎𝑠𝑦𝑛𝑐 )

Synchronous Cross−modal Loss (𝐿𝑠𝑦𝑛𝑐 )

Intra−modal Loss (𝐿𝑖𝑛𝑡𝑟𝑎 )

Visual Encoder Audio Encoder

RGB Frames,

Mel-spectrogram

Fig. 1: Our proposed framework.

Temporal Relaxation
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None: both the audio and visual segments are
sampled from the exact same timestamp.
Mild: the two views of the audio-visual seg-
ments share 50% overlap amongst them.
Medium: the adjacent frame sequences and
audio segments are sampled.
Mixed: the two audio-visual segments are
sampled in a temporally random manner.
Extreme: one view is sampled from the first
half of the source clip, and the other view is
sampled from the second half of the source clip.

Fig. 2: Exploring temporal relaxation.

Effect of Learning Asynchronous Cross-modal Relations

w/ asynchronous loss
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Fig. 3: Left: Distribution of the learned representations; Right: Linear eval. top-1 acc. vs. pretraining epochs; w/
and w/o the asynchronous cross-modal optimization.

Pretrain Downstream w/o Lasync w/ Lasync
Kinetics400 UCF101 75.8(↓ 4.1) 79.9
Kinetics400 ESC50 78.5(↓ 3.5) 82.0

Kinetics400 Kinetics-Sound (a) 43.2(↓ 3.9) 47.1
Kinetics400 Kinetics-Sound (v) 53.3(↓ 2.4) 55.7
Kinetics400 Kinetics-Sound (a+v) 65.0(↓ 1.7) 66.7

Tab. 1: Impact of Lasync optimization in different pretraining and evaluation setups.
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Fig. 4: Visualization of saliency maps while pretrained without (left) and with (right) asynchronous loss.

Pretraining Dataset

Kinetics-Sound (22K) Kinetics400 (240K) AudioSet (1.8M)

HMDB51 45.7 50.0 56.2
UCF101 78.1 83.9 87.7
Kinetics400 39.0 44.5 50.1
ESC50 82.8 86.8 90.5
DCASE 93.0 96.0 97.0

Tab. 2: The top-1 acc. of linear evaluation on action recognition and sound classification with varying sizes of
pretraining data.

Results

Method
Pretraining
Compute

Pretrained
Dataset

Backbone
(#Params (M))

Finetune
#frames UCF101 HMDB51

CM-ACC 40 GPUs Kinetics-Sound 3D-ResNet18 (33.4) 32 77.2 40.6
CrissCross 4 GPUs Kinetics-Sound R(2+1)D-18 (15.4) 32 88.3 60.5
Supervised - Kinetics-Sound 3D-ResNet18 (33.4) 32 86.9 53.1

XDC 64 GPUs Kinetics400 R(2+1)D-18 (31.5) 8 74.2 39.0
AVID 64 GPUs Kinetics400 R(2+1)D-18 (15.4) 8 83.7 49.5
CrissCross 8 GPUs Kinetics400 R(2+1)D-18 (15.4) 8 86.9 54.3

XDC 64 GPUs Kinetics400 R(2+1)D-18 (31.5) 32 86.8 52.6
AVID 64 GPUs Kinetics400 R(2+1)D-18 (15.4) 32 87.5 60.8
CrissCross 8 GPUs Kinetics400 R(2+1)D-18 (15.4) 32 91.5 64.7
Supervised - Kinetics400 R(2+1)D-18 (31.5) 32 95.0 74.0

XDC 64 GPUs AudioSet R(2+1)D-18 (31.5) 8 84.9 48.8
AVID 64 GPUs AudioSet R(2+1)D-18 (15.4) 8 88.6 57.6
CrissCross 8 GPUs AudioSet R(2+1)D-18 (15.4) 8 89.4 58.3

XDC 64 GPUs AudioSet R(2+1)D-18 (31.5) 32 93.0 63.7
AVID 64 GPUs AudioSet R(2+1)D-18 (15.4) 32 91.5 64.7
CrissCross 8 GPUs AudioSet R(2+1)D-18 (15.4) 32 92.4 67.4
Supervised - AudioSet R(2+1)D-18 (31.5) 32 96.8 75.9

Tab. 3: SOTA comparison on action recognition.

Method
ESC50 DCASE

Kinetics400 AudioSet Kinetics400 AudioSet

XDC 78.0 84.8 91 95
AVID 79.1 89.1 93 96
CrissCross 86.8 90.5 96 97

Tab. 4: SOTA comparison on sound classification.
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Fig. 5: We present a few randomly selected samples of video-to-video (left) and audio-to-audio (right) retrieval.

Summary

• We propose a novel self-supervised framework CrissCross to learn audio-visual repre-
sentations by exploiting intra-modal, as well as, synchronous and asynchronous cross-
modal relationships. Our findings show that the relaxation of cross-modal temporal syn-
chronicity to some extent helps in learning more generalized representations which re-
sults in better downstream performance.

• Our experiments show that CrissCross either outperforms or achieves performances on
par with the current state-of-the-art self-supervised methods on action recognition and re-
trieval on UCF101 and HMDB51, as well as sound classification on ESC50 and DCASE.
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