A Deep Learning Approach for AR-based Adaptive Simulation using Wearables
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Simulations enable a risk-free way for healthcare practitioners to learn and enhance their skills. - = P, | ,
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complexity of a simulation by altering symptom severity of a patient using augmented reality
(AR) to ensure an optimum amount of cognitive load is maintained. A deep learning approach
was taken to utilize electrocardiogram (ECG) and galvanic skin response (GSR) collected using
wearable devices. The model was developed to classify high vs low cognitive load, as well as
level of expertise, and validated using “leave one out” scheme. Finally, the intelligent
dynamically adaptive AR simulation was successfully tested in real time on two participants of
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Result and Analysis
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We used an augmented reality overlay on top of a mannequin to
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» Expert participants (Experienced in emergency medicine) RR peaks for ECG feature extraction expertise and high cognitive load.
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Conclusion
o N Skin Conductance Response RT
SN / \ i | HRT We were able to accurately estimate cognitive load and expertise in real-time and use the
'x\ f /\ | if;‘fa’ classifications to alter a simulation with augmented reality to maintain optimal cognitive load.
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