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Introduction

Electrocardiogram (ECG) is the electrical measurement of cardiac activity,
whereas Photoplethysmogram (PPG) is the optical measurement of volu-
metric changes in blood circulation. While both signals are used for heart
rate monitoring, from a medical perspective, ECG is more useful as it carries
additional cardiac information. However, there are no reliable solutions for
continuous ECG monitoring in wrist-based wearable, feasible for everyday and
pervasive use.

Problem Statement: Our goal is to enable the use of ECG in wrist-based
wearable devices such as smart watches, for continuous cardiac monitoring.

Broader Impact: Cardiovascular diseases cause approximately 31% of global
deaths. We believe continuous wearable-based ECG could enable early diag-
nosis of cardiovascular diseases, and in turn, early preventative measures can
be taken to overcome severe cardiac problems.

Method

We propose a novel framework called CardioGAN (see Fig. 1) for generating
ECG signals from PPG inputs. We utilize attention-based generators and dual
time and frequency domain discriminators along with a CycleGAN backbone to
obtain realistic ECG signals.
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Fig. 1: The architecture of the proposed CardioGAN is presented.

Our final objective function is a combination of adversarial loss and cyclic
consistency loss as presented below.

Adversarial Losses are applied in both forward and inverse mappings. For the
mapping function GE : P → E, and discriminators Dt

E and Df
E, the adversarial

losses are defined as Ladv(GE, Dt
E) and Ladv(GE, D

f
E) respectively. Similarly,

for the inverse mapping function GP : E → P , and discriminators Dt
P and

D
f
P , the adversarial losses are defined as Ladv(GP , Dt

P ) and Ladv(GP , D
f
P )

respectively.

Cyclic Consistency Loss is introduced to ensure that forward mappings and
inverse mappings are consistent, i.e., p → GE(p) → GP (GE(p)) ≈ p, as well
as e → GP (e) → GE(GP (e)) ≈ e, we minimize the cycle consistency loss
denoted as Lcyclic(GE, GP ).

Final Loss function of CardioGAN is computed as:

LCardioGAN = αLadv(GE, Dt
E) + αLadv(GP , Dt

P )

+ βLadv(GE, D
f
E) + βLadv(GP , D

f
P ) + λLcyclic(GE, GP )

where α and β are adversarial loss coefficients corresponding to Dt and Df

respectively, and λ is the cyclic consistency loss coefficient.

Experiments

Datasets: We combine 4 very popular ECG-PPG datasets, namely BIDMC, CAPNO, DALIA, and WESAD
to enable a multi-corpus approach leveraging large and diverse distributions of data.

Data Preparation: As a first step we re-sampled both the ECG and PPG signals with a sampling rate
of 128 Hz. Next, person-specific z-score normalization is performed on both ECG and PPG. Then, the
normalized ECG and PPG signals are segmented into 4-second windows. Finally, we perform min-max
[−1, 1] normalization on both ECG and PPG segments to ensure all the input data are in a specific range.

Architecture:

• Attention U-Net is used as our generator (GE and GP ), where self-gated soft-attention units are used
to filter the features passing through the skip connections.

• Dual discriminators are used to classify real and fake data in time and frequency domains. Dt
E and

Dt
P take time-series signals, whereas, spectrograms are given as inputs to Df

E and Df
P .

Training:

• 80% of the users from each dataset (a total of 101 participants, equivalent to 58K segments) for training,
and the remaining 20% of users from each dataset (a total of 24 participants, equivalent to 15K segments)
for testing.

• To enable CardioGAN to be trained in an unpaired fashion, we shuffle the ECG and PPG segments from
each dataset separately eliminating the couplings between ECG and PPG followed by a shuffling of the
order of datasets themselves for ECG and PPG separately.

• We use a batch size of 128, to train our model for 15 epochs, where the learning rate (1e−4) is kept
constant for the initial 10 epochs and then linearly decayed to 0.

Results

Qualitative Results: We present a number of samples (see Fig. 2) of ECG signals generated by CardioGAN,
clearly showing that our proposed network is able to learn to reconstruct the shape of the original ECG signals
from corresponding PPG inputs.
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Fig. 2: We present ECG samples generated by our proposed CardioGAN.

Quantitative Results: To evaluate the impact of our solution, we measure mean absolute error for the
HR estimation (in BPM) obtained from generated ECG and PPG signal with respect to a ground-truth
HR obtained from original ECG. Our result shows significant improvement in minimizing error while using
CardioGAN, the HR estimation error from synthetic ECG is 2.89 beats compared to original PPG, 9.74
beats. Please note, lower error rate is better.

Live Demonstration

We present a live demonstration showing how our model can be used in real-time using a wrist-based
wearable device to feed it with PPG data and generate continuous ECG signals. Please check our project
page here: https://pritamqu.github.io/ppg2ecg-cardiogan/.

Analysis

Attention Map: We visualize the attention maps (see Fig. 3) applied to the
very last skip connection of the generator (GE). This shows that our model
learns to generally focus on the PQRST complexes, which in turn helps the
generator to learn the shapes of ECG waveform better as evident from qualita-
tive and quantitative results presented earlier.
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Fig. 3: Visualization of attention maps are presented where the brighter parts indicate regions to which the

generator pays more attention compared to the darker regions.

Failed Cases: We notice there are instances (see Fig. 4) where Cardio-
Gan fails to generate ECG samples that resemble the original ECG data very
closely. Such cases arise only when the PPG input signals are of very poor
quality.
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Fig. 4: Few failed ECG examples generated by CardioGAN are presented.

Summary

• We propose a novel framework called CardioGAN for generating ECG sig-
nals from PPG inputs.

• More accurate and reliable HR from generated ECG by CardioGAN vs.
original PPG.

• We present a novel and innovative solution towards cheap, and continuous
ECG monitoring, using off-the-shelf PPG-based wearables.

• This is the first study, attempted towards generating ECG from PPG (or in
fact any cross-modality signal-to-signal translation in the biosignal domain)
using GANs or other deep learning techniques.

Question?

You may direct any questions or additional queries at: pritam.sarkar@

queensu.ca. To find more about my research, please visit my homepage:
pritamsarkar.com.
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