Classification of Cognitive Load and Expertise for Adaptive Simulation using Deep Multitask Learning

Authors

Pritam Sarkar, Kyle Ross, Aaron J. Ruberto, Dirk Rodenburg, Paul Hungler, Ali Etemad

Motivation

Problem Statement

- Current learning systems like simulations are *one size fits all*
- Different people learn at *different rates* and showing different learning patterns.
- **Goal**: to develop a system that personalizes training plans based on individuals

Our Proposed Framework

Experiment Setup

Experiment Setup

Data Collection

Microsoft HoloLens for placing augmented reality objects and capturing first person video.

Shimmer Sensor for collecting ECG

9
5
4

Data Collection

There are three stages of data collection:

- 1. Baseline Data
- 2. Simulation Data
- 3. Ground Truth

Data Pre-processing & Feature Extraction

- 1. Filter ECG signals
- 2. Segment into 10 seconds window with 50% overlap
- 3. Used Pan Tompkins algorithm for R-R peaks detection
- 4. RR intervals were calculated.
- 5. Time domain and Frequency domain features extracted.
- 6. Features were normalized using baseline data

Deep Multitask Learning

Input Layer

Hidden Layers

Output Layer

Cross entropy loss:
$$L = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log P(y_i) + (1 - y_i) \log (1 - P(y_i))]$$

Final Loss
$$L_{total} = L_{expertise} + L_{cognitive \, load}$$

Result

	Accuracy	Precision	Recall	NPV	F1-score
Expertise	96.6	97.7	95.4	95.6	0.965
Cog. Load	89.4	95.7	81.8	85.0	0.882

Result Comparison

Ref.	Task	Attribute	Signals	Method	Acc.
[30]	Mental		, ECG, EMG,	kNN	50.4%
	Task	Cog. Load	GSR, Temp	NB	56.3%
	Task		OSK, Temp	RF	57.8%
				kNN	80.4%
[18]	Computer	Anxiety	ECG, GSR,	BN	80.6%
	Game	Allxicty	Temp	RT	80.4%
				SVM	88.9%
[17]	Driving task	Stress	ECG, EMG, GSR	LDA	97.3%
[44]	Arithmetic	Ctross	GSR	SVM	81.3%
	Task	Stress	30088	USIX	LDA
Ours	Training	Expertise	ECG	DMNN	$96.6\% \\ 89.4\%$
	Simulation	Cog. Load	LCU	DIVITATA	89.4%

Note: All the references are same as original manuscript.

Analysis

P(Cognitive Load | Input)

Brighter areas indicate larger number of produced outputs. A relatively inverse relationship is observed. The color bar indicates the concentration of the data points.

Conclusion and Future Work

- We proposed a framework for adaptive simulation.
- We were able to accurately estimate cognitive load and expertise.

Thank you! Question?

Contact:

Pritam Sarkar

www.pritamsarkar.com

