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- Current learning systems like
simulations are one size fits all

- Different people learn at different rates
Problem and showing different learning patterns.

Statement

- Goal: to develop a system that

personalizes training plans based on
iIndividuals
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Data Collection

Microsoft HoloLens for
placing augmented reality
objects and capturing first

person video.

Shimmer Sensor for
collecting ECG

Total Participants 9
Expert (Physicians) 5
Novice (4th Year medical students) 4
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There are three stages of data collection:

Data Collection 1.Baseline Data
2. Simulation Data
3. Ground Truth
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Data Pre-processing

&
Feature Extraction
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Filter ECG signals

Segment into 10 seconds window with 50% overlap
Used Pan Tompkins algorithm for R-R peaks detection
RR Intervals were calculated.

Time domain and Frequency domain features extracted.
Features were normalized using baseline data
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Deep Multitask

. Input Layer Hidden Layers Output Layer
Learning
1 N
Cross entropy loss: L= _NZ:[yi logP(y;) + (1 —y;)log (1-P(y;))]
i=1
Final Loss Ltota] - LeXpertise . Lcognitive load
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’ 0 10 150 20 250 300 350 400
Number of epochs
Accuracy Precision  Recall NPV Fl-score
Expertise 96.6 7.7 95.4 95.6 0.965
Cog. Load 894 95.7 381.8 83.0 0.882
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Ref. Task Attribute Signals Method Acc.
Mental ECG, EMQG, FNN 50.47%
[30] Task Cog. Load GSR. Tem NB 56.3%
> LMD RF 57.8%
ENN 80.4%
Computer . ECG, GSR, BN 80.6%
[13] Game Anxiety Temp RT 80.4%
R I t C : SVM 88.9%

esu OIm parISOn Driving ECG
[17] sk Stress EMG. GSR [LDA 97.3%
Arithmetic SVM 81.3%
[44] Task Stress GSR LDA 82.8%
Training Expertise 96.6%
Ours Simulation  Cog. Load BCG DMINN 89.4%
Note: All the references are same as original manuscript.
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P(Expertise | Input)

Analysis

P(Cognitive Load | Input)

Brighter areas indicate larger number of produced
outputs. A relatively inverse relationship is observed.
The color bar indicates the concentration of the data
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- We proposed a framework for adaptive simulation.

- We were able to accurately estimate cognitive load
and expertise.

Conclusion - Next steps:

and ]
Modulating

the simulation

Future Work

Proposed

Subject monitoring Framework
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Thank you!

Question?

Contact:
- Pritam Sarkar

pritam.sarkar@queensu.ca
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www.pritamsarkar.com O
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