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Affective Computing

‘I call "affective computing,” computing that relates to, arises from, or influences emotions.”

R. W. Picard, Affective computing, MIT Press, 2000




Modalities and Applications
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Problem and Motivation

Limitations of fully-supervised learning:

2 Human annotated labels are required to learn data
representations; the learned representations are

often very task specific.

Q Larger labelled data are required in order to train

deep networks; smaller datasets often result in

poor performance.




Problem and Motivation

Advantages of self-supervised learning:

2 Models are trained using automatically generated

labels.

1 Learned representations are high-level and
generalized; therefore less sensitive to inter or intra

Instance variations (local transformations).

1 Larger datasets can be acquired to train deeper and

sophisticated networks.




Contribution

12 We propose a self-supervised framework for emotion recognition based on multi-task ECG
representation learning for the first time and achieve state-of-the-art results in four public datasets.

> P. Sarkar and A. Etemad, “Self-supervised learning for ECG-based emotion recognition”, IEEE 45"
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

» P. Sarkar and A. Etemad, “Self-supervised ECG representation learning for emotion recognition”,
under review in IEEE Trans. Affective Computing.

1 As a case study, we propose a novel end-to-end framework for adaptive simulation for training
trauma responders, capable of dynamically adapting to the cognitive load and the level of expertise of

individuals.

» P. Sarkar, K. Ross, et al., “Classification of cognitive load and expertise for adaptive simulation using
deep multitask learning,” IEEE 8™ International Conference on Affective Computing and Intelligent

Interaction (ACII), 20109.

» K. Ross, P. Sarkar, et al., “Toward dynamically adaptive simulation: Multimodal classification of user
expertise using wearable devices”, J. Sensors, 20109.




Literature Review

1 Healey et al., 2005:
» Stress detection during driving task

» Time/frequency domain features ,\ '\ ’\ /‘ /\ /‘
» LDA classifier
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> Time/frequency domain features Time/Frequency
> RF, KNN, BN, SVM classifiers Domain
Feature Extraction
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Q Liuetal., 2009:
» Affect based gaming experience

a Santamaria et al., 2018:
» Movie clips were used to elicit emotional state
» Time/frequency domain features
» Deep CNN classifier

Fully-supervised
Classifier

a Siddharth et al., 2019:
» Affect recognition

4

» HRYV and spectrogram features Emotion Recognition
» Extreme learning machine classifier




Proposed Framework

Stage 1: Pretext Task
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Stage 2: Downstream Task

Our proposed framework.




Transformations

Automatically

2 Noise Addition [SNR = 15] : ] | | B ! B
a Scaling [scaling factor = 0.9] 15 Dendobodond | S T
2 Negation

2 Temporal Inversion 4
0 Permutation [no. of segments = 20] =0 ] s

A Time-warping [no. of segments=9, MJAWJLMLNWL«.WL,JLK 6

stretching factor = 1.05]} A sample of an original ECG signal with the six transformed
signals along with automatically generated labels are presented.
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Datasets

The summary of the four datasets used are presented.

Dataset Participants Attributes Classes
Arousal 9
AMIGOS 40 Valence 9
DREAMER 23 Arousal )
Valence 5
WESAD 17 Affect State 4
Stress 3
SWELL 25 Arousal 9
Valence 9




Transformation Recognition Results

Signal transformation recognition across the four

datasets are presented.

Transformation

All datasets combined

Acc. F1
Original 0.980 + 0.003 | 0.927 = 0.007
Noise Addition 0.995 £ 0.000 | 0.979 4 0.003
Scaling 0.982 £0.003 | 0.932 4 0.010
Temporal Inversion | 0.998 & 0.000 | 0.992 £ 0.004
Negation 0.998 = 0.000 | 0.990 == 0.000
Permutation 0.998 == 0.000 | 0.989 == 0.003
Time-warping 0.997 == 0.003 | 0.992 == 0.006
Average 0.992 £+ 0.001 | 0.972 4 0.005




Emotion Recognition Results

Multi-class emotion recognition results are presented for each of
the four datasets.

Dataset Attribute Classes | Acc. F1
Arousal 9 0.796 | 0.777
AMIGEOS Valence 9 0.783 | 0.765
Arousal 5! 0.771 | 0.740
DREAMER Valence 5! 0.749 | 0.747
WESAD Affect State | 4 0.950 | 0.940
Arousal 9 0.926 | 0.930
SWELL Valence 9 0.938 | 0.943
Stress 3 0.902 | 0.900




Comparison

The results of our self-supervised method on all the datasets are presented and compared with
prior works including the state-of-the-art, as well as a fully-supervised CNN as a baseline.

A: AMIGOS B: DREAMER
Arousal Valence Arousal Valence
Ref.. | ‘Method Acc. |F1I | Acc. [Tl Het: | Method Acc. |FI | Acc. [FI
[5] GNB - 0.545 | - 0:551 [23] | SVM 0.624 | 0.580 | 0.624 | 0.531
[29] | CNN 0.81 0.76 0.71 0.68 O Fully-Supervised CNN | 0.707 | 0.708 | 0.666 | 0.658
Oiiie Fully-Supervised CNN | 0.844 | 0.835 | 0.811 | 0.809 Self-Supervised CNN | 0.859 | 0.859 | 0.850 | 0.845
Self-Supervised CNN | 0.889 | 0.884 | 0.875 | 0.874
C: WESAD D: SWELL
Affect State Stress Arousal Valence
Ref. Method Acc. F1 Ref. | Method Acc. F1 Acc. F1 Acc. F1
kNN 0.548 | 0.478 32] kNN 0.769 | — - - - -
24] DT 0578 | 0:617 SVM 0.864 | — - - ~ -
RF 0.604 | 0.522 O Fully-Supervised CNN | 0.894 | 0.874 | 0.956 | 0.962 | 0.961 | 0.956
AB 0.617 | 0.525 Self-Supervised CNN | 0.933 | 0.924 | 0.967 | 0.964 | 0.973 | 0.969
LDA 0.663 | 0.560
[31] | CNN 0.83 0.81
0 Fully-Supervised CNN | 0.932 | 0.912
UrS Self-Supervised CNN | 0.969 | 0.963




Relationship Between Pretext Task and Downstream Task
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Transformation Recognition Accuracy

The relationship between emotion recognition accuracy and transformation recognition is presented.




A Case Study

Self-
supervised
learning
framework

Simulation
based
training
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Affective
computing
application




Adaptive Simulation

What we expect: What we have: We propose.:

Collecting
Controlling physiological
oot Adaptive data
ptimum
Components S (e.g. ECG)
Boredom Stressed

Classify
Cognitive load
and expertise
U

Learning Rate

Cognitive Load
End-to-end framework for the development of adaptive

simulation that actively classifies a participant's level of
cognitive load and expertise.




Experiment Setup

WMAAMMAMAAA,

Touch when sensor connected
” 09:23 Am

NBP Cum1

ET 14

Distractors were introduced to give superfluous information during
simulation.

Participants during simulation, this picture was taken from the ‘ l ‘ l ‘ l

control room. AR bbject to control severity of patient’s respiratory problem.




CLEAS — Data collection protocol

Cognitive Load and Expertise for Adaptive Simulation

Signing Filling Attaching | Baseline | Scenario |Simulation 1| Scenario |Simulation 2| Removing| Debrief
of demographic | sensor data |explanation| (10 mins) |explanation| (10 mins) sensor session
consent | information and (2 mins) and
form HoloLens HoloLens

CLEAS Dataset
Attributes ECG, Cognitive load,
Expertise
Total participants 9
Expert (Physicians) 5
Novice (4t year students) 4
Shimmer Sensors to collect ECG Signal




Method: Fully-supervised

Input Layer Hidden Layers Output Layer

1 Features were normalized using baseline data.

0 Utilised a deep multi-task neural network for the Our proposed Deep Multi-task Neural Network.

classification of expertise and cognitive load.

Steps:
a0 Segmented into 10 seconds window with 50% i . i
overlap. | 128 128 128 | :
: 64 64 64 OO D O :
0 Used Pan Tompkins algorithm for R peaks detection. '+ |~ 8 8 8 oReo e 8» 71— epertise
| | B ol o no MMM e :
2 Time and Frequency domain features were ! O A 2 |/ | — Cognitive Load!
extracted. : ORORONsEeNe O |




Method: Self-supervised

Steps:

1. Signal Transformation Recognition Network <
T | w— Task 1
. . \ - I
a2 Combined CLEAS dataset with AMIGOS, Unlabelled Datasets 2 m
DREAMER, SWELL and WESAD to perform self- (AMIGOS, DREAMER, _ [ Conv | _ | & 5 | — Task2
_ _ SWELL, WESAD, and Blocks S T
supervised learning. CLEAS) £ K
/ ;
2 Obtained the learned ECG representation from self- & | =— TaskN
Self-supervised Training &

supervised network and utilized for classification of
cognitive load and expertise.

Transfer Learning

4_|.I_

/

Cognitive Load
— and

Expertise

Labelled Frozen
CLEAS Dataset Network

Flattening Layer
FC Layers

\

2. Emotion Recognition Network




CLEAS: Fully-supervised Learning Results

Comparison of our proposed Deep Multitask Neural Network (DMNN) with previous approaches
and baseline.

Ref. Task Attribute Signals Method Acec.
_ Mental ECG, EMG, AN 50.47%
[29] Task Cog. Load  ~op’ NB 56.3%

i RF 57.8%
ENN 80.4%
26] Computer Aot ECG, GSR, BN 80.6%
o Game y Temp RT 80.4%
SVM 88.9%
23] DE;‘;fg Stress EMEGC%SR LDA  97.3%
-1 Arithmetic 3 SVM 81.3%
[99) Task Stress GSR LDA 82.8%
Expertise 89.9%
Training  Cog. Load SVM 75.1%

Ours . . . ECG
Simulation  Expertise DMNN 96.6%
Cog. Load 89.4%




CLEAS: Self-supervised Learning Results

Transformation Recognition

Emotion Recognition

Transformation Acc.

Original 0.962 4+ 0.004 | 0.866 £ 0.013
Noise Addition 0.992 4+ 0.001 | 0.971 £ 0.007
Scaling 0.963 £ 0.004 | 0.865 £ 0.021
Temporal Inversion | 0.998 4 0.000 | 0.992 £ 0.000
Negation 0.996 4 0.000 | 0.987 £ 0.002
Permutation 0.995 = 0.000 | 0.983 = 0.002
Time-warping 0.995 £ 0.001 | 0.983 £ 0.005
Average 0.986 4 0.002 | 0.950 £ 0.007

Expertise Cognitive Load
Ref. | Method Acc. | F1 Acc. | F1
Ours Fully-Supervised CNN 0.882 | 0.937 | 0.886 | 0.899
Self-Supervised CNN | 0.954 | 0.954 | 0.961 | 0.961




Summary

1 We proposed a novel ECG-based self-supervised learning framework for affective computing for
the first time.

2 We achieved state-of-the-art results on 4 public datasets (AMIGOS, DREAMER, WESAD,
SWELL).

1 We presented insightful and in-depth analysis of our proposed self-supervised framework.

2 We proposed a novel end-to-end framework for an adaptive simulation for training trauma
responders for the first time.
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